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Abstract

The inverted complex Wishart distribution is studied
and its use for the construction of spectral estimates is illus-
trgted. The density, some marginals of the distribution, and
the first- and second-order moments are given. For a vector-
valued time series, estimation of the spectral density at a col-
lection of frequencies and estimation of the increments of the
spectral distriraution function in each of a set of frequency
bands are corsidered. A formal procedure applies Bayes theorem,
where the complex Wishart is used to represent the distribution
of an average of adjacent periodogram values. A conjugate prior
distribution for each parameter vgctor is a product of inverted

complex Wishart distributions.

AMS 1970 subject classifications: Primary 62H10; Secondary 62M15,
62E15.

Key words and phrases: Complex Wishart distribution, inverted
complex Wishart distribution, multiple time series, spectral

density, periodogram, prior distribution, posterior distribution.




1. Introduction

In multiple time series analysis complex multivariate
distributions are commoniy used to describe estimates of frequency
domain parameters. A review of complex multivariate distributions
and their application in time series has recently been given by
Krishnaiah [8]. The complex Wishart distribution, in particular,
was introduced and used by Goodman [4,5] to approximate the dis-
tribution of an estimate of the spectral density matrix for a
vector-valued stationary Gaussian process. In this paper the in-
verted complex Wishart distribution is studied and its use for the
construction of spectral estimates is illustrated.

Methods of spectral estimation typically involve peri-
odogram smoothing. The amount and type of smoothing one performs
depend to a considerable extent upon prior knowledge of the spec-
tral density to be estimated. A method of incorporating prior
information about the shape and smoothness of a spectral density
into the formation of a spectral estimate has been given by
Shaman (9] for a univariate time series. Two types of finite-
dimensional parameters are considered, the spectral density ordi-
nates at a specified collection of frequencies and the amount of
power in each of a set of frequency bands. The method is condi-
tional upon the asymptotic distribution of periodogram averages.

A formal procedure applies Bayes theorem, with a conjugate prior
distribution being a product of inverted gamma distributions.

The mean of the posterior distribution involves simple linear ad-
justﬁents of the periodogram averages, with coefficients depending

upon prior distribution parameters. Although the method is not
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genuinely Bayesian, 1t does permit one to incorporate prior in-
formafion about the height and shape of the spectral density into
the construction of an estimate in a formal manner.

The spectral density estimation methodology Jjust dis-
cussed is extended to a vector time series model in the present
paper. The asymptotic distribution of a set of nonoverlapping
periodogram averages is a product of complex Wishart distributions.
A conjugate prior distribution is a product of inverted complex
Wishart distributions.

In Section 2 the density of the inverted complex Wishart
distribution will be derived; as well as some marginals of the dis?
tribution and its first- and second-order moments. Details of the
proposed use of the inverted complex Wishart distribution in spec-

tral estimation are given in Section 3.

2. The Inverted Complex Wishart Distribution

Let X,,°°*,X_  be independent rxi1 vectors, each com-

y & n
plex normal with mean O and. covariance matrix Z (see Wooding

[12] and Goodman [5]). Then the rxr matrix

where the asterisk designates conjugate transpose, has a complex
Wishart distribution with n degrees of freedom and covariance

matrix I, denoted Wy(r,n,Z). The density is (Goodman (5])
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— WP Tetr (=), , W>O0,
f"r(n)|ZInl eI A Ne (1)

where

T.(n) = v'br(r'i).jﬁlr(n-ﬁl)

is the complex multivariate gamma function.

We wish to determine the density of V==W'1, an inverted

complex Wishart variate. The volume element associated with a

+ic is

Hermitian matrix C:=(cJkR _ JkI)

M49€ 5 5RMey 39€ gk 1

Lemma. Let X be an rxr Hermitian nonsingular matrix. Then
1

the Jacobian of the transformation Y=X "~ 1is 53 i

Proof. Let A be an rxr complex nonsingular matrix. The
Jacobian of the transformation Y =AXA* is |aA*|"F, vy (2.8) of

Khatri [7]). The desired result follows from consideration of

% 1 -1

ay =aX ! « X tax ¥t o -xtax(x*) 2.

According to the lemma the density of V is

1¢|® etr(-v~1y)
0 R

s BAR 0, (2)

where v=2"1. Denote the distribution of V by Wg (r,n,¥).
The marginal distributions of certain sets of elements

of V are also inverted complex Wishart. Let

Vi1 Vi
¥ - | i
Vor Voo
- 3 -
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where V11 is gqxq, and partition y similarly. Consider the

distribution of V11° The method of derivation is that given by
Tiao and Zellner [10] for marginals of the inverted Wishart dis-
tribution, modified for the present complex case. The Jacobian

of the transformation from V12, V22 to &, H;

T 1
120 B = Voo =V Vi3 Vio

is lvillz(r'Q), from (2.3) of Khatri [7]. Then the marginal
density of Vil is seen to be

n-r+q -1
vy, | etr(-Vy; ¥y4)

- n-r+2q
rq(n'r+Q) Iviil i

s 1€QGgTEN, Vil:>0.

) -1 e
That is, V,, 1s W (q,n-r+q,w11). When g=1, V,, bhas the in-

verted gamma distribution with density

tlg-r+1GXP(-W11/V11)

n-r+2 5
r'(n-r+1) Vi

n>r, Vi1:>0.

Next we consider first- and second-order moments of V.
The derivation follows that given by Kaufman [6] for the real in-
verted Wishart distribution. The method is to write the complex
Wishart matrix W as TT*, where T is lower triangular. The

Joint distribution of the elements of T 1s easily obtained whén
-1

Z =1 and can be used to derive moments of T in the general case.

If the rxr Hermitian matrix W is written as TT*,

where T 1s lower triangular, the transformation from W to T




has Jacobian

2 2r-2j+1
2"3511:JJ

(see Goodman [5], p.165). Then by (1) the density of T is

en-2J+1 etr(-z~irr*). (3)
T.(n)|5|® g 99
When Z =I, (3) becomes
s e £ r o J=1
ng ﬂmem exp(-tdg) t'j?n 2J+1J22 . %exp(-ltjk|2), (4)

which is the density of Qr(r+1) independent random variables.

2

2 e i
Specifically, ZtJJ is X2n-2,j+2’ j=1, 2, and th'thR"'ithI

has a univariate complex normal distribution, Jj>k. The pair
(t JKR? t JkI) is bivariate normal with mean O and covariance

matrix §I2 .

The inverted complex Wishart matrix V=W-1 is B8'8,

where S = (s,jk) =T'1 is lower triangular. To clarify some later

discussion we denote w1l

by Y when 2 =I, that is, when T
has density (4). |

In terms of elements of T,




-

S = L J=1, e » I',
t 2
Jd 33
4 J-1 J=2 J-1
o ot Saker Sl 2 by M 2 ; Z U8, ey, 00k
gl=k+1 1,2=k+1 11=12+1

(5)

3=k
+eeet(-1) uj,J-luJ-l,j-2.'. Yers k|’ J>k,

where

When 2 =I the distribution of (2n-.'2;]+2)iuJk is com-
plex t with 2n-2j+2 degrees of freedom. The density of this

complex t variate with f degrees of freedom is
1

2\ =1+l
ar (1+-|3f1—)

Some moments of the variables tjj’ th, and ujk when

g(u) =

Z =1 are required. First note

-2) Lo -4 1

Bty ) =nge Bbyy) = wrer i

Jel,***1, N>r+l.

The complex normal variables th satisfy
E(lt 12 =1, E(lt, Y =2, 3>k (8)
Jk E Jk s ¥

and these are the only nonzero moments up to order four. That is,




all odd moments of t,jk are O, and moreover E(t,jk) =0,
E(tJl;) =E(t;jk Jk) =0. For the U variables, (7) and (8)
imply
Blug By e o, Blug 1™ « et (9)
Jk n-J’ Jk m=J)(n-3-17 ’

J>k, n>r+1,

and these are the only nonzero moments up to order four, as with

the variables tjk'

The elements of Y are

r

Tl Y T P (10)
g=max(J,k)

By (4) - (6) and the discussion following (8), we see that
E(sg.j gk) =0, J+k. Therefore

E(yjk) =0, J #k‘ (11)
By (4) - (20),
, g-1
& . 1 [ 3 - VTR
E(legyl™) =557 (mg * L B-g B4,
g-2 g-1
1 1 L
i z z n-g n-1, n-1, (12)
12*J+1 Ll=l.2+1
1 b o |
kb n-g n-g+1 """ n-J-1




It follows from (5) and (6) with tJJ==n-J, J=1l,°¢,r, tjk'='1’

>k, and (12) that the rxr matrix with elements E(lsgjlz)

is the inverse of

=

n-1 0 0
-1 n-2 0

b
which is %
z 1 B
n—l
1 1
ln-l,in—ﬁi n-2
1 1
n- n- nN=- n"/
1 1
| To-r+i) (n-7) T(o-t+1) (o-T)

Therefore

X
B(yyy) = ) E(ls 4l

Evaluation of second-order moments of the elements

g=J
1

0

0

0 .

n~r |
0 0
0 0
3 0
-3
1 1
(n=-r+1j(n-r) °'°° n-r

n-j (n-j=-1)(n-j-1i-1)
i=0

i S
n-r ’

of Y 1s much more difficult and tedious.

J=1,:+,r.

From the above

(13)
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discussion it follows that

Cov(y.s¥,.) =0 unless Jj=k,t=m,
Jk’Y4m ' (1)4)
i or J=m,k=g.
Lengthy direct calculations from (4) - (11) and (13) yield
1
Var(y.,) = s J#i,**,r, n>r+1, (15)
. JJ (n-r)e(n-r-l) :

C 3B ) = - + X, n>r+1, (16

ov(YJj kk (n-r+1)(n-r)2(n-r-1) I+ g )
and

Cov(ka,ykJ) =(n-r+1)(n%r)(n_r_1j’ J¥k, n>r+i. (17)

Now let Z ©be an arbitrary Hermitian positive definite

matrix. Write I =AA%*, where A 1is lower triangular. If W is
Wc(r,n,I), then AWA* is Wc(r,n,z). The desired inverse is

V =B*YB, where B=A"1 and Y 1is Wai(r,n,I). Thus
¥ ¥
T = L) Dag¥ebon.  Ske,es,r. (18)
a=J p=k

From (11), (13) - (18), and some further manipulations we obtain
the desired moments of V, denoting £ (o'jk),

E(V) = 2257, n>r, (19)

gdmg ek | 1 Ik 4m

n-r
Cov(ka,vLm) * e (heroIT n>r+1. (20)




3. Application of the Inverted Complex Wishart Distribution
to Spectral Estimation

The methodology described below is based upon distribu-
tional approximations and we make assumptions which allow these
to hold. The conditions in Brillinger, [1] and [2], Chapters 5
and 7, in particular, are used.

Let X(t) (t=0,:t1,"') be a vector-valued strictly
stationary stochastic process for which all moments exist. Denote
the components of X(t) by XJ(t) (j#44,---,r), the mean by
E{X(t)}=m, and the spectral density by f£(\) (+m< A< T). The

cumulant functions of the process are

C (t1: 2 ’tk-l) =cmn{X’jl(j:1+t) it S ,X'jk-l(tk_1+t) ,xJk(t)}

- AR,

(.j =1,...’r’ i=1"",k,t+t""_’ -+t, t=o,il’...,k=2,3,.")o
i 1 i

Assume for Ji=1,~--,r(i=1,'-',k) that

Z lc'jls"':-jk(ti’”.’tk-i)l<°° (k=2,3,°).
e Ll T (21)

This ensures the existence and uniform continuity of cumulant
spectra of all orders.
Assume a time series X(t) (t=0,1,---,T-1) is avail-

able. The periodogram is

I(\) =55 2(0Z()* (=T gT), (22)

w 1O -




where 2Z()) = E;éei)‘tx(t) (-m<Agm). Let p={#(T-1)]. Then

I(2rj/T) are asymptotically independent variables distributed

as Wc{r,i,f(zvrj/T)} (j=1,+++,p) (see Brillinger [2], Theorem
7.2.4). Also I(w) 1is asymptotically an r xr Wishart variable
with one degree of freedom and covariance matrix f(m), and is
independent of the other variables. If m#$0, I(0) 1is approxi-
mately an r xr noncentral Wishart variable with one degree of
freedom.

Restrict attention to frequencies 0< A< T and let J(T)

be a sequence of integers such that 27j(T)/T is near \(#0,7)

and converges to )\ as T-=>x. Then

a

z = gior ) I[2r(J(T)+h}/T] (23)
=-n

L

is an estimate of f()) and is asymptotically distributed as
(2n+1)"1wc{r,2n+1,f()\)}. If 3 =0 (23) is replaced by

1(2Th/T), (24)

N

[[]
S
e e

h=1
and if )\ =,
n

zl(w-avh/'r) (T even)
h=1

N
[
] [

(25)
n

.% ZI(v-w/T-mrh/T) (T odd)
. het

P 1
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is used. The complex Wishart was established as a limiting distri-
bution for (22) and for (23) - (25) with fixed n by Brillinger (1]
for the case m=0. For \$%0, the asymptotic distributions of
I(A) and z are the same whether or not m=0 and in [2]
Brillinger treats an arbitrary m. Wahba [11] and Gleser and
Pagano [3] allow n->«o under the assumption X(t) is Gaussian.
Under appropriate conditions, M nonoverlapping sums of the form
(23) are asymptotically independent complex Wishart matrices as

n, M, T>x=. The covariance matrices of the asymptotic camplex

Wishart distributions are

n
s g, £ler(d(T)+n)/Tl,

h=-n

where 27j(T)/T converges to some )\ as T->o.
Consider estimation of the spectral density at a fixed,
preassigned set of frequencies, Og )\1< cee & )\Mgr. The choice of

M and the frequencies may involve use of prior information. For

example, if the spectral density is considered a priori to be
approximately constant in certain bands, the frequencies may be
interior points of the bands.

To avoid anomalous cases assume x1>0, XM< m. Let
z, denote the right-hand side of (23) for 2n+1>r and
2rj(T)/T near )\L(L=1,°“,M). Define z=(zl,-~-,zM) and
f:{f(xi),-~-,f(1M)}. We use the asymptotic distribution of =z

described above. Then 2z has density

W e




M 2n+l-r
2 L2n+1)(2n+1)rM ! lzzl

h(z|f
st [f}(2n+1)}mﬁ L=1 [f(x,

etr{-f(x‘)'1(2n+1)zz}
(26)

)|2n+1
(2n+1>r).

Then a conjugate prior density is a product of inverted complex

Wisharts,

) 1

B,J

. M
l tr{-f(1,)"
h(f) = ;E; i - (lé T

(GLZI‘, L=1:"':M)' (27)
Tola) el *

The posterior density from (26) and (27) is

2n+1+a£ -1
|(2n+1)z‘+szl etr[-f()\z) {(2n+1)zl+8l}]

2n+r+l+a P ’

M

h(flz) = T
L=1

(28)

Tp(2nti4a,)£(n,)]

a product of inverted complex Wishart densities. The mean of the
posterior occurs at f()‘z) = { (2n+1)zz + al}/(2n+i+az-r) (g=1,+-+,M).
Knowledge of the spectral density ordinate at each of a
numter of specified frequencies can convey an accurate picture of
the shape of the curve. However, more basic interest may concern
the increments of the spectral distribution function in certain
frequency bands. Consider a partition O= xo< A\ L eee L 1M< Aeq =T
and let F(A.) denote the spectral distribution function. Consider
the parameter p= (‘pi,- .. ’pM+1)’ where P, =F(1‘) - F(M-l)
(4=1,<++ ,M+1). The partition is fixed for all sample sizes. Let
kL(T)[zao,'--,M+1, ko(T) =1, km+1(T) = (#(T-1)]} be integers such
that the frequencies 27j/T are in the interval (x‘_i,x‘) for




k, 3(T) <3 <k, (T)-1 and define m,(T) =k (T)- k, ,(T). Then
under the assumption (21) and the conditions in Wahba [11] or
Gleser and Pagano [3] the sums

k‘(T)-l

y = z I(2r3/T) (£=1,¢00,M+1)
d=kz,1('l‘)

are approximately distributed as independent r x r complex Wishart
variables with m‘(T)'degrees of freedom and covariance matrices

(T) £(273/T) (2=1,...,M+1).
E J*E_:I(T)

We further approximate the distribution of y, @as that of
wc{r,mz(T), sz/(2vm‘(T))} (L=1,..:,M+l). Details of the transition
to a postérior distribution for the parameter p are similar to
those given at (26) - (28). One can restrict attention to a set of

frequency bands whose union forms a subset of [O,T7].
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